Hemodynamics-driven magnetoelastic vascular grafts for stenosis diagnosis – Nature Biotechnology
Timmis, A. et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur. Heart J. 43, 716–799 (2022).
Google Scholar
Tsao, C. W. et al. Heart disease and stroke statistics—2023 update: a report from the American Heart Association. Circulation 147, e93–e621 (2023).
Google Scholar
Beerkens, F. J. et al. Contemporary coronary artery bypass graft surgery and subsequent percutaneous revascularization. Nat. Rev. Cardiol. 19, 195–208 (2022).
Google Scholar
Gutowski, P. et al. Arterial reconstruction with human bioengineered acellular blood vessels in patients with peripheral arterial disease. J. Vasc. Surg. 72, 1247–1258 (2020).
Google Scholar
Vachharajani, T. J., Taliercio, J. J. & Anvari, E. New devices and technologies for hemodialysis vascular access: a review. Am. J. Kidney Dis. 78, 116–124 (2021).
Google Scholar
Niklason, L. E. & Lawson, J. H. Bioengineered human blood vessels. Science 370, eaaw8682 (2020).
Google Scholar
Kirkton, R. D. et al. Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation. Sci. Transl. Med. 11, eaau6934 (2019).
Google Scholar
Wang, D. et al. Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels. Sci. Adv. 8, eabq6900 (2022).
Google Scholar
Seifu, D. G., Purnama, A., Mequanint, K. & Mantovani, D. Small-diameter vascular tissue engineering. Nat. Rev. Cardiol. 10, 410–421 (2013).
Google Scholar
Drews, J. D. et al. Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci. Transl. Med. 12, eaax6919 (2020).
Google Scholar
Moore, M. J., Tan, R. P., Yang, N., Rnjak-Kovacina, J. & Wise, S. G. Bioengineering artificial blood vessels from natural materials. Trends Biotechnol. 40, 693–707 (2022).
Google Scholar
Nezarati, R. M., Eifert, M. B., Dempsey, D. K. & Cosgriff-Hernandez, E. Electrospun vascular grafts with improved compliance matching to native vessels. J. Biomed. Mater. Res. B Appl. Biomater. 103, 313–323 (2015).
Google Scholar
Quin, J. A. et al. Coronary artery bypass grafting transit time flow measurement: graft patency and clinical outcomes. Ann. Thorac. Surg. 112, 701–707 (2021).
Google Scholar
Kim, K.-B. et al. Twenty-year experience with off-pump coronary artery bypass grafting and early postoperative angiography. Ann. Thorac. Surg. 109, 1112–1119 (2020).
Google Scholar
Wolf, F. et al. MR and PET–CT monitoring of tissue-engineered vascular grafts in the ovine carotid artery. Biomaterials 216, 119228 (2019).
Google Scholar
Fananapazir, G. et al. Screening for transplant renal artery stenosis: ultrasound-based stenosis probability stratification. Am. J. Roentgenol. 209, 1064–1073 (2017).
Google Scholar
Frija, G. et al. How to improve access to medical imaging in low- and middle-income countries? eClinicalMedicine 38, 101034 (2021).
Google Scholar
Weiss, D. J. et al. Global maps of travel time to healthcare facilities. Nat. Med. 26, 1835–1838 (2020).
Google Scholar
Elbadawi, A. et al. Outcomes of reoperative coronary artery bypass graft surgery in the United States. J. Am. Heart Assoc. 9, e016282 (2020).
Google Scholar
Zhou, Y. et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 20, 1670–1676 (2021).
Google Scholar
Zhao, X. et al. A reconfigurable and conformal liquid sensor for ambulatory cardiac monitoring. Nat. Commun. 15, 8492 (2024).
Google Scholar
Zhao, X. et al. Permanent fluidic magnets for liquid bioelectronics. Nat. Mater. 23, 703–710 (2024).
Google Scholar
Kim, Y. & Zhao, X. Magnetic soft materials and robots. Chem. Rev. 122, 5317–5364 (2022).
Google Scholar
Liu, J. et al. Bioresorbable shape-adaptive structures for ultrasonic monitoring of deep-tissue homeostasis. Science 383, 1096–1103 (2024).
Google Scholar
Walden, R., L’Italien, G. J., Megerman, J. & Abbott, W. M. Matched elastic properties and successful arterial grafting. Arch. Surg. 115, 1166–1169 (1980).
Google Scholar
Ku, H.-C., Lee, S.-Y., Wu, Y.-K. A., Yang, K.-C. & Su, M.-J. A model of cardiac remodeling through constriction of the abdominal aorta in rats. J. Vis. Exp. 2, e54818 (2016).
Rocha, R. V. et al. Multiple arterial grafting is associated with better outcomes for coronary artery bypass grafting patients. Circulation 138, 2081–2090 (2018).
Google Scholar
Ma, Y. et al. Relation between blood pressure and pulse wave velocity for human arteries. Proc. Natl Acad. Sci. USA 115, 11144–11149 (2018).
Google Scholar
Seo, Y. K. et al. Correlation between scaffold in vivo biocompatibility and in vitro cell compatibility using mesenchymal and mononuclear cell cultures. Cell Biol. Toxicol. 25, 513–522 (2009).
Google Scholar
Gelman, S., Warner, D. S. & Warner, M. A. Venous function and central venous pressure: a physiologic story. Anesthesiology 108, 735–748 (2008).
Google Scholar
Oglat, A. A. et al. A review of medical doppler ultrasonography of blood flow in general and especially in common carotid artery. J. Med. Ultrasound 26, 3–13 (2018).
Google Scholar
Shorten, C. & Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. J. Big Data 6, 60 (2019).
Google Scholar
Szegedy, C. et al. Going deeper with convolutions. In Proc. 2015 IEEE Conference On Computer Vision and Pattern Recognition 1–9 (Curran Associates, 2015).
MATLAB. Classify time series using wavelet analysis and deep learning. MATLAB Help Center https://www.mathworks.com/help/wavelet/ug/classify-time-series-using-wavelet-analysis-and-deep-learning.html (2024).
Delwatta, S. L. et al. Reference values for selected hematological, biochemical and physiological parameters of Sprague–Dawley rats at the animal house, Faculty of Medicine, University of Colombo, Sri Lanka. Animal Model Exp. Med. 1, 250–254 (2018).
Google Scholar
Charles River Laboratories. CD IGS rat model information sheet https://www.criver.com/resources/cd-igs-rat-model-information-sheet (Charles River, 2007).
de Kort, M. et al. Historical control data for hematology parameters obtained from toxicity studies performed on different Wistar rat strains: acceptable value ranges, definition of severity degrees, and vehicle effects. Toxicol. Res. Appl. 4, 2397847320931484 (2020).
Seo, S. et al. Artificial neural network for Slice Encoding for Metal Artifact Correction (SEMAC) MRI. Magn. Reson. Med. 84, 263–276 (2020).
Google Scholar
Lee, E. M. et al. Improving MR image quality in patients with metallic implants. Radiographics 41, E126–E137 (2021).
Google Scholar
Kwon, K., Kim, D., Kim, B. & Park, H. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients. Magn. Reson. Med. 83, 124–138 (2020).
Google Scholar
Alexander, J. H. & Smith, P. K. Coronary-artery bypass grafting. N. Engl. J. Med. 374, 1954–1964 (2016).
Google Scholar
Enriquez-Marulanda, A. et al. The evolution and future directions of bypass surgery. J. Neurosurg. 142, 40–51 (2025).
Google Scholar
Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).
Google Scholar
Moin, A. et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4, 54–63 (2021).
Google Scholar
Ballard, Z., Brown, C., Madni, A. M. & Ozcan, A. Machine learning and computation-enabled intelligent sensor design. Nat. Mach. Intell. 3, 556–565 (2021).
Google Scholar
Varghese, C., Harrison, E. M., O’Grady, G. & Topol, E. J. Artificial intelligence in surgery. Nat. Med. 30, 1257–1268 (2024).
Google Scholar
Kwon, K. et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 7, 1215–1228 (2023).
Google Scholar
Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).
Google Scholar
Park, K. et al. Resealable antithrombotic artificial vascular graft integrated with a self-healing blood flow sensor. ACS Nano 17, 7296–7310 (2023).
Google Scholar
Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).
Google Scholar
Lin, M. et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects. Nat. Biotechnol. 42, 448–457 (2024).
Google Scholar
Sykes, M. & Sachs, D. H. Progress in xenotransplantation: overcoming immune barriers. Nat. Rev. Nephrol. 18, 745–761 (2022).
Google Scholar
Chen, G. et al. Raw imaging data. figshare https://doi.org/10.6084/m6089.figshare.28326497 (2025).




