グアダラハラ – アメリカ

シーバス・デ・グアダラハラ vs クラブ・アメリカ

Clinical progress of engineered cellular immunotherapies for autoimmunity – Nature Biotechnology
グアダラハラ - アメリカ

Clinical progress of engineered cellular immunotherapies for autoimmunity – Nature Biotechnology


  • Davenport, A. J. et al. CAR-T cells inflict sequential killing of multiple tumor target cells. Cancer Immunol. Res. 3, 483–494 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Locke, F. L. et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 20, 31–42 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abramson, J. S. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839–852 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Roddie, C. et al. Obecabtagene autoleucel in adults with B-cell acute lymphoblastic leukemia. N. Engl. J. Med. 391, 2219–2230 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • San-Miguel, J. et al. Cilta-cel or standard care in lenalidomide-refractory multiple myeloma. N. Engl. J. Med. 389, 335–347 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sadelain, M. CAR therapy: the CD19 paradigm. J. Clin. Invest. 125, 3392–3400 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abeles, I. et al. B cell-directed therapy in autoimmunity. Annu. Rev. Immunol. 42, 103–126 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vital, E. M. et al. B cell biomarkers of rituximab responses in systemic lupus erythematosus. Arthritis Rheum. 63, 3038–3047 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anolik, J. H. et al. Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum. 56, 3044–3056 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reddy, V. R. et al. Disparity in peripheral and renal B-cell depletion with rituximab in systemic lupus erythematosus: an opportunity for obinutuzumab? Rheumatology 61, 2894–2904 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mouquet, H. et al. B-cell depletion immunotherapy in pemphigus: effects on cellular and humoral immune responses. J. Invest. Dermatol. 128, 2859–2869 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hammers, C. M. et al. Persistence of anti-desmoglein 3 IgG+ B-cell clones in pemphigus patients over years. J. Invest. Dermatol. 135, 742–749 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kavanaugh, A. et al. Assessment of rituximab’s immunomodulatory synovial effects (ARISE trial). 1: clinical and synovial biomarker results. Ann. Rheum. Dis. 67, 402–408 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yeung, C. C. S. et al. Abnormal bone marrow findings in patients following treatment with chimeric antigen receptor-T cell therapy. Eur. J. Haematol. 112, 111–121 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Reilly, M. et al. Trafficking of CAR T cells to sites of subclinical leukaemia cutis. Lancet Oncol. 21, e179 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Siddiqi, T. et al. CD19-directed CAR T-cell therapy for treatment of primary CNS lymphoma. Blood Adv. 5, 4059–4063 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kansal, R. et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci. Transl. Med. 11, eaav1648 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, X. et al. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus. Cell. Mol. Immunol. 18, 1896–1903 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mougiakakos, D. et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 385, 567–569 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Muller, F. et al. CD19 CAR T-cell therapy in autoimmune disease—a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024). This is the largest case series of anti-CD19 CAR T cells in autoimmunity published to date, involving eight individuals with SLE who all achieved DORIS remission, three individuals with IIM who achieved ACR-EULAR major clinical response and four individuals with SSc who demonstrated improved EUSTAR activity index. All 15 individuals discontinued immunosuppressive therapy. The mean period of B cell depletion was 112 days. Adverse events included grade 1 CRS (n = 10), grade 2 CRS (n = 1), grade 1 ICANS (n = 1) and pneumonia resulting in hospitalization (n = 1).

    Article 
    PubMed 

    Google Scholar 

  • Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nordmann-Gomes, A. et al. CAR T-cell therapy in SLE: a systematic review. Semin. Arthritis Rheum. 74, 152786 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bergmann, C. et al. Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. Ann. Rheum. Dis. 82, 1117–1120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Auth, J. et al. CD19-targeting CAR T-cell therapy in patients with diffuse systemic sclerosis: a case series. Lancet Rheumatol. 7, e83–e93 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pecher, A. C. et al. CD19-targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome. JAMA 329, 2154–2162 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merkt, W. et al. Third-generation CD19.CAR-T cell-containing combination therapy in Scl70+ systemic sclerosis. Ann. Rheum. Dis. 83, 543–546 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Allogeneic CD19-targeted CAR-T therapy in patients with severe myositis and systemic sclerosis. Cell 187, 4890–4904 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muller, F. et al. CD19-targeted CAR T cells in refractory antisynthetase syndrome. Lancet 401, 815–818 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Nicolai, R. et al. Autologous CD19-targeting CAR T cells in a patient with refractory juvenile dermatomyositis. Arthritis Rheumatol. 76, 1560–1565 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Taubmann, J. et al. Rescue therapy of antisynthetase syndrome with CD19-targeted CAR-T cells after failure of several B-cell depleting antibodies. Rheumatology 63, e12–e14 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Volkov, J. et al. Case study of CD19 CAR T therapy in a subject with immune-mediate necrotizing myopathy treated in the RESET-Myositis phase I/II trial. Mol. Ther. 32, 3821–3828 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haghikia, A. et al. Clinical efficacy and autoantibody seroconversion with CD19-CAR T cell therapy in a patient with rheumatoid arthritis and coexisting myasthenia gravis. Ann. Rheum. Dis. 83, 1597–1598 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lidar, M. et al. CD-19 CAR-T cells for polyrefractory rheumatoid arthritis. Ann. Rheum. Dis. 84, 370–372 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Szabo, D. et al. Sustained drug-free remission in rheumatoid arthritis associated with diffuse large B-cell lymphoma following tandem CD20–CD19-directed non-cryopreserved CAR-T cell therapy using zamtocabtagene autoleucel. RMD Open 10, e004727 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. Fourth-generation chimeric antigen receptor T-cell therapy is tolerable and efficacious in treatment-resistant rheumatoid arthritis. Cell Res. 35, 220–223 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haghikia, A. et al. Anti-CD19 CAR T cells for refractory myasthenia gravis. Lancet Neurol. 22, 1104–1105 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Motte, J. et al. Treatment of concomitant myasthenia gravis and Lambert–Eaton myasthenic syndrome with autologous CD19-targeted CAR T cells. Neuron 112, 1757–1763 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muppidi, S. et al. Utilization of MG-ADL in myasthenia gravis clinical research and care. Muscle Nerve 65, 630–639 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischbach, F. et al. CD19-targeted chimeric antigen receptor T cell therapy in two patients with multiple sclerosis. Med 5, 550–558 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Richter, J. et al. CD19-directed CAR T cell therapy in 4 patients with refractory multiple sclerosis. Blood 144, 2073–2073 (2024).

    Article 

    Google Scholar 

  • ACTRIMS Forum 2025—Posters. Mult. Scler. J. 31, 24–244 (2025).

  • Minopoulou, I. et al. Anti-CD19 CAR T cell therapy induces antibody seroconversion and complete B cell depletion in the bone marrow of a therapy-refractory patient with ANCA-associated vasculitis. Ann. Rheum. Dis. 84, e4–e7 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trautmann-Grill, K. et al. Salvage treatment of multi-refractory primary immune thrombocytopenia with CD19 CAR T cells. Lancet 405, 25–28 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schultze-Florey, C. R. et al. Anti-CD19 CAR-T cell therapy for acquired hemophilia A. Leukemia 39, 980–982 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brudno, J. N. & Kochenderfer, J. N. Current understanding and management of CAR T cell-associated toxicities. Nat. Rev. Clin. Oncol. 21, 501–521 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shu, J. et al. Safety and clinical efficacy of relmacabtagene autoleucel (relma-cel) for systemic lupus erythematosus: a phase 1 open-label clinical trial. EClinicalMedicine 83, 103229 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cappell, K. M. & Kochenderfer, J. N. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nat. Rev. Clin. Oncol. 18, 715–727 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feucht, J. & Sadelain, M. Function and evolution of the prototypic CD28ζ and 4-1BBζ chimeric antigen receptors. Immunooncol. Technol. 8, 2–11 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hagen, M. et al. Local immune effector cell-associated toxicity syndrome in CAR T-cell treated patients with autoimmune disease: an observational study. Lancet Rheumatol. 7, e424–e433 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhoj, V. G. et al. Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood 128, 360–370 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verdun, N. & Marks, P. Secondary cancers after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 390, 584–586 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Storgard, R., Rejeski, K., Perales, M. A., Goldman, A. & Shouval, R. T-cell malignant neoplasms after chimeric antigen receptor T-cell therapy. JAMA Oncol. 10, 826–828 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harrison, S. J. et al. CAR+ T-cell lymphoma after cilta-cel therapy for relapsed or refractory myeloma. N. Engl. J. Med. 392, 677–685 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dulery, R. et al. T cell malignancies after CAR T cell therapy in the DESCAR-T registry. Nat. Med. 31, 1130–1133 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hamilton, M. P. et al. Risk of second tumors and T-cell lymphoma after CAR T-cell therapy. N. Engl. J. Med. 390, 2047–2060 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ozdemirli, M. et al. Indolent CD4+ CAR T-cell lymphoma after cilta-cel CAR T-cell therapy. N. Engl. J. Med. 390, 2074–2082 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Braun, T. et al. Multiomic profiling of T cell lymphoma after therapy with anti-BCMA CAR T cells and GPRC5D-directed bispecific antibody. Nat. Med. 31, 1145–1153 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qin, C. et al. Anti-BCMA CAR T-cell therapy CT103A in relapsed or refractory AQP4-IgG seropositive neuromyelitis optica spectrum disorders: phase 1 trial interim results. Signal Transduct. Target. Ther. 8, 5 (2023). The largest case series of anti-BCMA CAR T cells in autoimmunity (NMOSD) showed that 11 of 12 patients achieved drug-free CR and 10 of 12 patients also achieved serologic remission. Hypogammaglobulinemia occurred in all patients who reached 6-month follow-up, associated with infectious SEAs.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muller, F. et al. BCMA CAR T cells in a patient with relapsing idiopathic inflammatory myositis after initial and repeat therapy with CD19 CAR T cells. Nat. Med. 31, 1793–1797 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin, C. et al. Anti-BCMA CAR-T therapy in patients with progressive multiple sclerosis. Cell 188, P6414–P6423 (2025).

    Article 

    Google Scholar 

  • Tipton, C. M. et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755–765 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W. et al. BCMA-CD19 compound CAR T cells for systemic lupus erythematosus: a phase 1 open-label clinical trial. Ann. Rheum. Dis. 83, 1304–1314 (2024). This is the largest published case series of dual CD19–BCMA-targeting CAR T cells in autoimmunity to date. Nine of 13 individuals with SLE achieved CR within 6 months; in 12 of 13, anti-dsDNA and other autoantibodies became undetectable. Hypogammaglobulinemia occurred in 100% of individuals, associated with one case of mild urinary tract infection and three cases of severe coronavirus disease-related pneumonia. Revaccination of one individual after CART therapy resulted in restoration of protective anti-hepatitis B titers.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shen, N. et al. Clinical impact of C-CAR168, a novel anti-CD20/BCMA composite autologous CAR T therapy, in refractory lupus nephritis. J. Rheumatol. 52, 25–26 (2025).

    Article 

    Google Scholar 

  • Wong, D. P. et al. A BAFF ligand-based CAR-T cell targeting three receptors and multiple B cell cancers. Nat. Commun. 13, 217 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, Y. et al. Translational development of a novel BAFF-R CAR-T therapy targeting B-cell lymphoid malignancies. Cancer Immunol. Immunother. 72, 4031–4047 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Granit, V. et al. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol. 22, 578–590 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chahin, N. et al. Durability of response to B-cell maturation antigen-directed mRNA cell therapy in myasthenia gravis. Ann. Clin. Transl. Neurol. 12, 2358–2366 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. et al. Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. J. Clin. Invest. 130, 6317–6324 (2020). This paper highlights the preclinical data leading to FDA clearance of the DSG3-CAART Investigational New Drug application, representing the first highly targeted precision cellular immunotherapy to enter clinical trials for an autoimmune disease indication.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oh, S. et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat. Biotechnol. 41, 1229–1238 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oh, S., Khani-Habibabadi, F., O’Connor, K. C. & Payne, A. S. Composition and function of AChR chimeric autoantibody receptor T cells for antigen-specific B cell depletion in myasthenia gravis. Sci. Adv. 11, eadt0795 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reincke, S. M. et al. Chimeric autoantibody receptor T cells deplete NMDA receptor-specific B cells. Cell 186, 5084–5097 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seifert, L. et al. An antigen-specific chimeric autoantibody receptor (CAAR) NK cell strategy for the elimination of anti-PLA2R1 and anti-THSD7A antibody-secreting cells. Kidney Int. 105, 886–889 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Altun B, et al. Preclinical feasibility of antigen-specific B-cell depletion for phospholipase A2 receptor membranous nephropathy with chimeric autoantibody receptor T-cells. Kidney Intl. 109, 89–100 (2026).

  • Meng, H. et al. La/SSB chimeric autoantibody receptor modified NK92MI cells for targeted therapy of autoimmune disease. Clin. Immunol. 192, 40–49 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, J. et al. GPIbα CAAR T cells function like a Trojan horse to eliminate autoreactive B cells to treat immune thrombocytopenia. Haematologica 109, 2256–2270 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, J. J. et al. Chimeric autoantibody receptor T cells clonally eliminate B cells producing autoantibodies against IFN-γ. Sci. Immunol. 10, eadm8186 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Payne, A. S. et al. Clinical and translational data from a first-in-human study of a novel precision cellular immunotherapy (DSG3-CAART) in mucosal pemphigus vulgaris. J. Invest. Dermatol. 145, S75 (2025).

    Article 

    Google Scholar 

  • Funakoshi, T. et al. Enrichment of total serum IgG4 in patients with pemphigus. Br. J. Dermatol. 167, 1245–1253 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Volkov, J.R. et al. Clinical and translational findings following MuSK-CAART infusion without preconditioning in patients with myasthenia gravis (MuSCAARTes trial). Hum. Gene Ther. 36, P0744 (2025).

  • Maciocia, N., Wade, B. & Maciocia, P. CAR T-cell therapies for T-cell malignancies: does cellular immunotherapy represent the best chance of cure? Blood Adv. 9, 913–923 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Angelos, M. G., Patel, R. P., Ruella, M. & Barta, S. K. Progress and pitfalls of chimeric antigen receptor T cell immunotherapy against T cell malignancies. Transplant. Cell. Ther. 30, 171–186 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, J. et al. Targeted CD7 CAR T-cells for treatment of T-lymphocyte leukemia and lymphoma and acute myeloid leukemia: recent advances. Front. Immunol. 14, 1170968 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Png, Y. T. et al. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Adv. 1, 2348–2360 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Y. et al. Sequential CD7 CAR T-cell therapy and allogeneic HSCT without GVHD prophylaxis. N. Engl. J. Med. 390, 1467–1480 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, S. et al. Eradication of T-ALL cells by CD7-targeted universal CAR-T cells and initial test of ruxolitinib-based CRS management. Clin. Cancer Res. 27, 1242–1246 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sumida, T. S., Cheru, N. T. & Hafler, D. A. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat. Rev. Immunol. 24, 503–517 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dominguez-Villar, M. & Hafler, D. A. Regulatory T cells in autoimmune disease. Nat. Immunol. 19, 665–673 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ho, P. et al. Harnessing regulatory T cells to establish immune tolerance. Sci. Transl. Med. 16, eadm8859 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bader, C. S. et al. Single-center randomized trial of Treg graft alone vs Treg graft plus tacrolimus for the prevention of acute GVHD. Blood Adv. 8, 1105–1115 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brunstein, C. G. et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 117, 1061–1070 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodger, B. et al. Protocol for a first-in-human feasibility study of T regulatory cells (TR004) for inflammatory bowel disease using (ex vivo) Treg expansion (TRIBUTE). BMJ Open 15, e092733 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oo, Y. H. et al. Liver homing of clinical grade Tregs after therapeutic infusion in patients with autoimmune hepatitis. JHEP Rep. 1, 286–296 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bender, C. et al. A phase 2 randomized trial with autologous polyclonal expanded regulatory T cells in children with new-onset type 1 diabetes. Sci. Transl. Med. 16, eadn2404 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brunstein, C. G. et al. Adoptive transfer of umbilical cord blood-derived regulatory T cells and early viral reactivation. Biol. Blood Marrow Transplant. 19, 1271–1273 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zielinski, M. et al. Combined therapy with CD4+ CD25highCD127 T regulatory cells and anti-CD20 antibody in recent-onset type 1 diabetes is superior to monotherapy: randomized phase I/II trial. Diabetes Obes. Metab. 24, 1534–1543 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • PolTREG. PolTREG Treg cell therapy for patients with type-1 diabetes shows long-term clinical remission and insulin independence https://poltreg.com/poltreg-treg-cell-therapy-for-patients-with-type-1-diabetes-shows-long-term-clinical-remission-and-insulin-independence (2024).

  • Tenspolde, M. et al. Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. J. Autoimmun. 103, 102289 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blat, D., Zigmond, E., Alteber, Z., Waks, T. & Eshhar, Z. Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol. Ther. 22, 1018–1028 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Paula Pohl, A. et al. Engineered regulatory T cells expressing myelin-specific chimeric antigen receptors suppress EAE progression. Cell. Immunol. 358, 104222 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Fransson, M. et al. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J. Neuroinflammation 9, 112 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raffin, C. et al. Development of citrullinated-vimentin-specific CAR for targeting Tregs to treat autoimmune rheumatoid arthritis. J. Immunol. 200, 176.117 (2018).

  • Kohler, M. et al. A phase 1 study of autologous CAR-Treg cells in refractory rheumatoid arthritis: interim report of safety and efficacy. Arthritis Rheumatol. 77, LB23 (2025).

  • Sagoo, P. et al. Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells. Sci. Transl. Med. 3, 83ra42 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, B. M., Lyle, M. J., Chen, A. C. & Miao, C. H. Antigen-specific in vitro expansion of factor VIII-specific regulatory T cells induces tolerance in hemophilia A mice. J. Thromb. Haemost. 18, 328–340 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Uenishi, G. I. et al. GNTI-122: an autologous antigen-specific engineered Treg cell therapy for type 1 diabetes. JCI Insight 9, e171844 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohkura, N. et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37, 785–799 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kitagawa, Y. & Sakaguchi, S. Molecular control of regulatory T cell development and function. Curr. Opin. Immunol. 49, 64–70 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mikami, N. et al. Epigenetic conversion of conventional T cells into regulatory T cells by CD28 signal deprivation. Proc. Natl. Acad. Sci. USA 117, 12258–12268 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akamatsu, M. et al. Conversion of antigen-specific effector/memory T cells into Foxp3-expressing Treg cells by inhibition of CDK8/19. Sci. Immunol. 4, eaaw2707 (2019).

  • Chen, K. Y. et al. Genome-wide CRISPR screen in human T cells reveals regulators of FOXP3. Nature 642, 191–200 (2025). This study uncovers a new epigenetic checkpoint controlling FOXP3 induction, advancing the mechanistic foundation for generating stable, clinically applicable iTreg cells in autoimmune and inflammatory diseases.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mukai, M. et al. Conversion of pathogenic T cells into functionally stabilized Treg cells for antigen-specific immunosuppression in pemphigus vulgaris. Sci. Transl. Med. 17, adq9913 (2025).

    Article 

    Google Scholar 

  • Mikami, N. et al. Generation of antigen-specific and functionally stable Treg cells from effector/memory T cells for cell therapy of immunological diseases. Sci. Transl. Med. 17, adr6049 (2025).

    Article 

    Google Scholar 

  • Simonetta, F., Alvarez, M. & Negrin, R. S. Natural killer cells in graft-versus-host-disease after allogeneic hematopoietic cell transplantation. Front. Immunol. 8, 465 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cichocki, F., van der Stegen, S. J. C. & Miller, J. S. Engineered and banked iPSCs for advanced NK- and T-cell immunotherapies. Blood 141, 846–855 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Myers, J. A. & Miller, J. S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 85–100 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Herrera, L. et al. The race of CAR therapies: CAR-NK cells for fighting B-cell hematological cancers. Cancers 13, 5418 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moscarelli, J., Zahavi, D., Maynard, R. & Weiner, L. M. The next generation of cellular immunotherapy: chimeric antigen receptor-natural killer cells. Transplant. Cell. Ther. 28, 650–656 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gregoire, C. et al. The trafficking of natural killer cells. Immunol. Rev. 220, 169–182 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rapp, M., Wiedemann, G. M. & Sun, J. C. Memory responses of innate lymphocytes and parallels with T cells. Semin. Immunopathol. 40, 343–355 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marin, D. et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nat. Med. 30, 772–784 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jorgensen, L. V., Christensen, E. B., Barnkob, M. B. & Barington, T. The clinical landscape of CAR NK cells. Exp. Hematol. Oncol. 14, 46 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, J. et al. Allogenic CD19 CAR NK cell therapy in refractory systemic lupus erythematosus—a case series study. Ann. Rheum. Dis. 84, 321 (2025).

    Article 

    Google Scholar 

  • Hayday, A., Dechanet-Merville, J., Rossjohn, J. & Silva-Santos, B. Cancer immunotherapy by γδ T cells. Science 386, eabq7248 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bertaina, A. et al. HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disorders. Blood 124, 822–826 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mensurado, S., Blanco-Dominguez, R. & Silva-Santos, B. The emerging roles of γδ T cells in cancer immunotherapy. Nat. Rev. Clin. Oncol. 20, 178–191 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yazdanifar, M., Barbarito, G., Bertaina, A. & Airoldi, I. γδ T cells: the ideal tool for cancer immunotherapy. Cells 9, 1305 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilhelm, M. et al. Successful adoptive transfer and in vivo expansion of haploidentical γδ T cells. J. Transl. Med. 12, 45 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neelapu, S. S. et al. A phase 1 study of ADI-001: anti-CD20 CAR-engineered allogeneic gamma delta (γδ) T cells in adults with B-cell malignancies. J. Clin. Oncol. 40, 7509 (2022).

    Article 

    Google Scholar 

  • Adicet Bio. Adicet Bio announces positive preliminary data from ADI-001 phase 1 study in patients with lupus nephritis (LN) and systemic lupus erythematosus (SLE) https://investor.adicetbio.com/news-releases/news-release-details/adicet-bio-announces-positive-preliminary-data-adi-001-phase-1 (2025).

  • Klebanoff, C. A., Khong, H. T., Antony, P. A., Palmer, D. C. & Restifo, N. P. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 26, 111–117 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. X., Shu, S. & Plautz, G. E. Host lymphodepletion augments T cell adoptive immunotherapy through enhanced intratumoral proliferation of effector cells. Cancer Res. 65, 9547–9554 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cohen, A. D. et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Illei, G. G. et al. Long-term effects of combination treatment with fludarabine and low-dose pulse cyclophosphamide in patients with lupus nephritis. Rheumatology 46, 952–956 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carmona-Rivera, C. & Kaplan, M. J. Low-density granulocytes in systemic autoimmunity and autoinflammation. Immunol. Rev. 314, 313–325 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bar-Or, A. & Li, R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol. 20, 470–483 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine–receptor complexes. Science 359, 1037–1042 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, J. Z. et al. A consideration of fixed dosing versus body size-based dosing strategies for chimeric antigen receptor T-cell therapies. Clin. Pharmacol. Drug Dev. 11, 1130–1135 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghassemi, S. et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol. Res. 6, 1100–1109 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wobma, H. et al. CAR T cell therapy for children with rheumatic disease: the time is now. Nat. Rev. Rheumatol. 21, 494–506 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krickau, T. et al. CAR T-cell therapy rescues adolescent with rapidly progressive lupus nephritis from haemodialysis. Lancet 403, 1627–1630 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Malvar, A. et al. Histologic versus clinical remission in proliferative lupus nephritis. Nephrol. Dial. Transplant. 32, 1338–1344 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joly, P. et al. First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): a prospective, multicentre, parallel-group, open-label randomised trial. Lancet 389, 2031–2040 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, S. W. et al. Monitoring disease activity in pemphigus with enzyme-linked immunosorbent assay using recombinant desmogleins 1 and 3. Br. J. Dermatol. 147, 261–265 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aguirre, F. et al. C3, C5a and anti-acetylcholine receptor antibody as severity biomarkers in myasthenia gravis. Ther. Adv. Neurol. Disord. 13, 1756286420935697 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, L. et al. Exploring the clinical significance of anti-acetylcholine receptor antibody titers, changes, and change rates in myasthenia gravis. Front. Neurol. 15, 1506845 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Nowak, R. J. et al. Phase 2 trial of rituximab in acetylcholine receptor antibody-positive generalized myasthenia gravis: the BeatMG study. Neurology 98, e376–e389 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lopez-Hoyos, M. et al. Clinical disease activity and titers of anti-dsDNA antibodies measured by an automated immunofluorescence assay in patients with systemic lupus erythematosus. Lupus 14, 505–509 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lazarus, M. N., Turner-Stokes, T., Chavele, K. M., Isenberg, D. A. & Ehrenstein, M. R. B-cell numbers and phenotype at clinical relapse following rituximab therapy differ in SLE patients according to anti-dsDNA antibody levels. Rheumatology 51, 1208–1215 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Junt, T. et al. Defining immune reset: achieving sustained remission in autoimmune diseases. Nat. Rev. Immunol. 25, 528–541 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, R. et al. Single-cell repertoire tracing identifies rituximab-resistant B cells during myasthenia gravis relapses. JCI Insight 5, e136471 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sato, Y., Silina, K., van den Broek, M., Hirahara, K. & Yanagita, M. The roles of tertiary lymphoid structures in chronic diseases. Nat. Rev. Nephrol. 19, 525–537 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, S. et al. Autoreactive B cell differentiation in diffuse ectopic lymphoid-like structures of inflamed pemphigus lesions. J. Invest. Dermatol. 140, 309–318 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tur, C. et al. CD19-CAR T-cell therapy induces deep tissue depletion of B cells. Ann. Rheum. Dis. 84, 106–114 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Welte, T. et al. Identification of covariates modulating B-cell repopulation kinetics in subjects receiving rituximab treatment. Arthritis Rheumatol. 75, 2045–2053 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Colliou, N. et al. Long-term remissions of severe pemphigus after rituximab therapy are associated with prolonged failure of desmoglein B cell response. Sci. Transl. Med. 5, 175ra130 (2013).

    Article 

    Google Scholar 

  • Hagen, M. et al. BCMA-targeted T-cell-engager therapy for autoimmune disease. N. Engl. J. Med. 391, 867–869 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Wang, Q. et al. In vivo CD19 CAR T-cell therapy for refractory systemic lupus erythematosus. N. Engl. J. Med. 393, 1542–1544 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Schett, G. et al. Updated phase 1 trial data assessing the tolerability, efficacy, pharmacokinetics, and pharmacodynamics of BMS-986353 (CC-97540), a CD19-directed chimeric antigen receptor T cell therapy using a next-generation process for severe refractory systemic lupus erythematosus https://www.congressconnection.com/assets/cdx001/acr-2025/ACR2025_Schett_.pdf (2025).

  • Bristol Myers Squibb. Bristol Myers Squibb presents encouraging data from phase 1 breakfree-1 study of CD19 NEX-T CAR T cell therapy in three chronic autoimmune diseases at ACR Convergence 2025 https://news.bms.com/news/corporate-financial/2025/Bristol-Myers-Squibb-Presents-Encouraging-Data-from-Phase-1-Breakfree-1-Study-of-CD19-NEX-T-CAR-T-Cell-Therapy-in-Three-Chronic-Autoimmune-Diseases-at-ACR-Convergence-2025/default.aspx (2025).

  • Aggarwal, R. et al. Promising early outcomes with BMS-986353, a CD19-directed chimeric antigen receptor T cell therapy in severe refractory idiopathic inflammatory myopathies: safety and efficacy findings from the ongoing phase 1 trial https://www.congressconnection.com/assets/cdx001/acr-2025/ACR2025_Breakfree-1_IIM_LB+poster_.pdf (2025).

  • Sheikh, S. et al. RESET-SLE: clinical trial evaluating Rese-cel (resecabtagene autoleucel), a fully human, autologous 4-1BB CD19-CAR T cell therapy in non-renal SLE and lupus nephritis. Arthritis Rheumatol. 77, 2468 (2025).

  • Khanna, D. et al. RESET-SSc: clinical trial evaluating Rese-cel (resecabtagene autoleucel), a fully human, autologous 4-1BB CD19-CAR T cell therapy in systemic sclerosis. Arthritis Rheumatol. 77, 1563 (2025).

  • Wilfong, E. et al. RESET-Myositis: clinical trial evaluating Rese-cel (resecabtagene autoleucel), a fully human, autologous 4-1BB CD19-CAR T cell therapy in idiopathic inflammatory myopathies. Arthritis Rheumatol. 77, 2669 (2025).

  • Hagen, M. et al. Safety and efficacy of autologous CD19-CAR T-cell therapy in patients with autoimmune disease—data from the CASTLE phase I/II basket study. Arthritis Rheumatol. 77, 0641 (2025).

  • Cortés-Hernández, J. et al. Preliminary results of an open-label, multicentre, phase 1/2 study to assess safety, efficacy, and cellular kinetics of YTB323 (rapcabtagene autoleucel), a rapidly manufactured CAR T-cell therapy targeting CD19 on B cells, for severe refractory systemic lupus erythematosus. Ann. Rheum. Dis. 83, 327–328 (2024).

    Article 

    Google Scholar 

  • Zhao, J. et al. Anti-CD19 chimeric antigen receptor T cell therapy for refractory systemic lupus erythematosus: an open-label pilot study. Arthritis Rheumatol. 77, 0647 (2025).

  • Leandro, M. et al. Obecabtagene autoleucel (obe-cel), a CD19-targeting autologous chimeric antigen receptor T-cell therapy (CAR T) with a fast off-rate binding domain, in patients (pts) with severe, refractory systemic lupus erythematosus (srSLE): preliminary results from the phase I CARLYSLE study. Arthritis Rheumatol. 77, 2458 (2025).

  • Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Oekelen, O. et al. Neurocognitive and hypokinetic movement disorder with features of parkinsonism after BCMA-targeting CAR-T cell therapy. Nat. Med. 27, 2099–2103 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marella, M. et al. Comprehensive BCMA expression profiling in adult normal human brain suggests a low risk of on-target neurotoxicity in BCMA-targeting multiple myeloma therapy. J. Histochem. Cytochem. 70, 273–287 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • LEAVE A RESPONSE

    Your email address will not be published. Required fields are marked *