グアダラハラ – アメリカ

シーバス・デ・グアダラハラ vs クラブ・アメリカ

Hemodynamics-driven magnetoelastic vascular grafts for stenosis diagnosis – Nature Biotechnology
グアダラハラ - アメリカ

Hemodynamics-driven magnetoelastic vascular grafts for stenosis diagnosis – Nature Biotechnology


  • Timmis, A. et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur. Heart J. 43, 716–799 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Tsao, C. W. et al. Heart disease and stroke statistics—2023 update: a report from the American Heart Association. Circulation 147, e93–e621 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beerkens, F. J. et al. Contemporary coronary artery bypass graft surgery and subsequent percutaneous revascularization. Nat. Rev. Cardiol. 19, 195–208 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gutowski, P. et al. Arterial reconstruction with human bioengineered acellular blood vessels in patients with peripheral arterial disease. J. Vasc. Surg. 72, 1247–1258 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Vachharajani, T. J., Taliercio, J. J. & Anvari, E. New devices and technologies for hemodialysis vascular access: a review. Am. J. Kidney Dis. 78, 116–124 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Niklason, L. E. & Lawson, J. H. Bioengineered human blood vessels. Science 370, eaaw8682 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kirkton, R. D. et al. Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation. Sci. Transl. Med. 11, eaau6934 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, D. et al. Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels. Sci. Adv. 8, eabq6900 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seifu, D. G., Purnama, A., Mequanint, K. & Mantovani, D. Small-diameter vascular tissue engineering. Nat. Rev. Cardiol. 10, 410–421 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Drews, J. D. et al. Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci. Transl. Med. 12, eaax6919 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moore, M. J., Tan, R. P., Yang, N., Rnjak-Kovacina, J. & Wise, S. G. Bioengineering artificial blood vessels from natural materials. Trends Biotechnol. 40, 693–707 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nezarati, R. M., Eifert, M. B., Dempsey, D. K. & Cosgriff-Hernandez, E. Electrospun vascular grafts with improved compliance matching to native vessels. J. Biomed. Mater. Res. B Appl. Biomater. 103, 313–323 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Quin, J. A. et al. Coronary artery bypass grafting transit time flow measurement: graft patency and clinical outcomes. Ann. Thorac. Surg. 112, 701–707 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kim, K.-B. et al. Twenty-year experience with off-pump coronary artery bypass grafting and early postoperative angiography. Ann. Thorac. Surg. 109, 1112–1119 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Wolf, F. et al. MR and PET–CT monitoring of tissue-engineered vascular grafts in the ovine carotid artery. Biomaterials 216, 119228 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fananapazir, G. et al. Screening for transplant renal artery stenosis: ultrasound-based stenosis probability stratification. Am. J. Roentgenol. 209, 1064–1073 (2017).

    Article 

    Google Scholar 

  • Frija, G. et al. How to improve access to medical imaging in low- and middle-income countries? eClinicalMedicine 38, 101034 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weiss, D. J. et al. Global maps of travel time to healthcare facilities. Nat. Med. 26, 1835–1838 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elbadawi, A. et al. Outcomes of reoperative coronary artery bypass graft surgery in the United States. J. Am. Heart Assoc. 9, e016282 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y. et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 20, 1670–1676 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, X. et al. A reconfigurable and conformal liquid sensor for ambulatory cardiac monitoring. Nat. Commun. 15, 8492 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, X. et al. Permanent fluidic magnets for liquid bioelectronics. Nat. Mater. 23, 703–710 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, Y. & Zhao, X. Magnetic soft materials and robots. Chem. Rev. 122, 5317–5364 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J. et al. Bioresorbable shape-adaptive structures for ultrasonic monitoring of deep-tissue homeostasis. Science 383, 1096–1103 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walden, R., L’Italien, G. J., Megerman, J. & Abbott, W. M. Matched elastic properties and successful arterial grafting. Arch. Surg. 115, 1166–1169 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ku, H.-C., Lee, S.-Y., Wu, Y.-K. A., Yang, K.-C. & Su, M.-J. A model of cardiac remodeling through constriction of the abdominal aorta in rats. J. Vis. Exp. 2, e54818 (2016).

    Google Scholar 

  • Rocha, R. V. et al. Multiple arterial grafting is associated with better outcomes for coronary artery bypass grafting patients. Circulation 138, 2081–2090 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Ma, Y. et al. Relation between blood pressure and pulse wave velocity for human arteries. Proc. Natl Acad. Sci. USA 115, 11144–11149 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seo, Y. K. et al. Correlation between scaffold in vivo biocompatibility and in vitro cell compatibility using mesenchymal and mononuclear cell cultures. Cell Biol. Toxicol. 25, 513–522 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gelman, S., Warner, D. S. & Warner, M. A. Venous function and central venous pressure: a physiologic story. Anesthesiology 108, 735–748 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Oglat, A. A. et al. A review of medical doppler ultrasonography of blood flow in general and especially in common carotid artery. J. Med. Ultrasound 26, 3–13 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shorten, C. & Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. J. Big Data 6, 60 (2019).

    Article 

    Google Scholar 

  • Szegedy, C. et al. Going deeper with convolutions. In Proc. 2015 IEEE Conference On Computer Vision and Pattern Recognition 1–9 (Curran Associates, 2015).

  • MATLAB. Classify time series using wavelet analysis and deep learning. MATLAB Help Center https://www.mathworks.com/help/wavelet/ug/classify-time-series-using-wavelet-analysis-and-deep-learning.html (2024).

  • Delwatta, S. L. et al. Reference values for selected hematological, biochemical and physiological parameters of Sprague–Dawley rats at the animal house, Faculty of Medicine, University of Colombo, Sri Lanka. Animal Model Exp. Med. 1, 250–254 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Charles River Laboratories. CD IGS rat model information sheet https://www.criver.com/resources/cd-igs-rat-model-information-sheet (Charles River, 2007).

  • de Kort, M. et al. Historical control data for hematology parameters obtained from toxicity studies performed on different Wistar rat strains: acceptable value ranges, definition of severity degrees, and vehicle effects. Toxicol. Res. Appl. 4, 2397847320931484 (2020).

    Google Scholar 

  • Seo, S. et al. Artificial neural network for Slice Encoding for Metal Artifact Correction (SEMAC) MRI. Magn. Reson. Med. 84, 263–276 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lee, E. M. et al. Improving MR image quality in patients with metallic implants. Radiographics 41, E126–E137 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kwon, K., Kim, D., Kim, B. & Park, H. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients. Magn. Reson. Med. 83, 124–138 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Alexander, J. H. & Smith, P. K. Coronary-artery bypass grafting. N. Engl. J. Med. 374, 1954–1964 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Enriquez-Marulanda, A. et al. The evolution and future directions of bypass surgery. J. Neurosurg. 142, 40–51 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moin, A. et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4, 54–63 (2021).

    Article 

    Google Scholar 

  • Ballard, Z., Brown, C., Madni, A. M. & Ozcan, A. Machine learning and computation-enabled intelligent sensor design. Nat. Mach. Intell. 3, 556–565 (2021).

    Article 

    Google Scholar 

  • Varghese, C., Harrison, E. M., O’Grady, G. & Topol, E. J. Artificial intelligence in surgery. Nat. Med. 30, 1257–1268 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kwon, K. et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 7, 1215–1228 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park, K. et al. Resealable antithrombotic artificial vascular graft integrated with a self-healing blood flow sensor. ACS Nano 17, 7296–7310 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, M. et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects. Nat. Biotechnol. 42, 448–457 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sykes, M. & Sachs, D. H. Progress in xenotransplantation: overcoming immune barriers. Nat. Rev. Nephrol. 18, 745–761 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, G. et al. Raw imaging data. figshare https://doi.org/10.6084/m6089.figshare.28326497 (2025).

  • LEAVE A RESPONSE

    Your email address will not be published. Required fields are marked *